Files
M3DocRAG/m3docvqa/main.py
2025-02-15 11:24:55 -05:00

202 lines
7.5 KiB
Python

# Copyright 2024 Bloomberg Finance L.P.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
"""Main Script for M3DocVQA Dataset Creation Pipeline.
This script orchestrates downloading PDFs or PNGs, checking for corrupted PDFs, extracting images,
organizing them into directories, downloading/decompressing MMQA data, and creating wiki links mapping.
Usage:
python main.py <action> [other options]
Actions:
- download_pdfs: Download PDFs from URLs provided in metadata.
- check_pdfs: Verify if the downloaded PDFs are valid.
- extract_images: Extract images from the pages of downloaded PDFs.
- organize_files: Organize downloaded PDFs into specified directory splits.
- download_mmqa: Download and decompress the MMQA dataset.
- generate_wiki_mapping: Generate a mapping of 'id' to 'url' from multiple JSONL files.
Example:
python main.py generate_wiki_mapping --text=MMQA_texts.jsonl --image=MMQA_images.jsonl --table=MMQA_tables.jsonl --output=id_url_mapping.jsonl
"""
import fire
import json
import jsonlines
from pathlib import Path
from m3docvqa.downloader import download_wiki_page
from m3docvqa.pdf_utils import is_pdf_downloaded, is_pdf_clean, get_images_from_pdf
from m3docvqa.split_utils import create_split_files
from m3docvqa.mmqa_downloader import download_and_decompress_mmqa
from m3docvqa.wiki_mapper import generate_wiki_links_mapping
from loguru import logger
from tqdm.auto import tqdm
def _prepare_download(
metadata_path: Path | str,
output_dir: Path | str,
first_n: int,
doc_ids: set,
check_downloaded: bool = False,
) -> tuple[list[str], list[Path]]:
"""Prepare URLs and save paths for downloading.
Args:
metadata_path (Path): Path to the metadata JSONL file.
output_dir (str): Directory where files will be saved.
first_n (int): Maximum number of entries to process.
doc_ids (set): Set of doc ids to filter for downloading.
Returns:
tuple[list[str], list[Path]]: URLs and save paths for downloading.
"""
output_dir = Path(output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
urls, save_paths = [], []
with jsonlines.open(metadata_path) as reader:
for line in reader:
if len(urls) == first_n:
break
doc_id = line.get("id")
url = line.get("url")
if doc_ids and doc_id not in doc_ids:
continue
save_path = output_dir / f"{doc_id}.pdf"
if check_downloaded and is_pdf_downloaded(save_path):
continue
urls.append(url)
save_paths.append(save_path)
return urls, save_paths
def download_pdfs(
metadata_path: Path | str,
pdf_dir: Path | str,
result_log_dir: Path | str,
per_split_doc_ids: Path | str,
first_n: int = -1,
proc_id: int = 0,
n_proc: int = 1,
check_downloaded: bool = False,
):
"""Download Wikipedia pages as PDFs."""
# Load document ids for the specified split
if per_split_doc_ids:
with open(per_split_doc_ids, "r") as f:
doc_ids = json.load(f)
logger.info(f"Downloading documents with {len(doc_ids)} document IDs from {metadata_path}.")
urls, save_paths = _prepare_download(metadata_path, pdf_dir, first_n, doc_ids, check_downloaded)
# split urls and save_paths (both are lists) into n_proc chunks
if n_proc > 1:
logger.info(f"[{proc_id}/{n_proc}] Splitting {len(urls)} URLs into {n_proc} chunks")
urls = urls[proc_id::n_proc]
save_paths = save_paths[proc_id::n_proc]
logger.info(f"[{proc_id}/{n_proc}] Starting download of {len(urls)} PDFs to {pdf_dir}")
download_results = download_wiki_page(urls, save_paths, "pdf", result_log_dir, proc_id, n_proc)
logger.info(f"[{proc_id}/{n_proc}] Download completed with {sum(download_results)} successful downloads out of {len(urls)}")
def check_pdfs(pdf_dir: str, proc_id: int = 0, n_proc: int = 1):
"""Verifies the integrity of downloaded PDFs."""
corrupted_paths = []
total_checked, corrupted_count = 0, 0
pdf_files = list(Path(pdf_dir).glob("*.pdf"))
for pdf_path in tqdm(pdf_files, disable=(proc_id != 0), desc="Checking PDFs"):
total_checked += 1
if not is_pdf_downloaded(pdf_path) or not is_pdf_clean(pdf_path):
corrupted_paths.append(pdf_path)
corrupted_count += 1
logger.info(f"Checked {total_checked} PDFs: {corrupted_count} corrupted files.")
if corrupted_paths:
logger.warning(f"Corrupted PDFs: {corrupted_paths}")
def extract_images(pdf_dir: str, image_dir: str, save_type='png'):
"""Extracts images from downloaded PDFs."""
Path(image_dir).mkdir(parents=True, exist_ok=True)
pdf_files = list(Path(pdf_dir).glob("*.pdf"))
if not pdf_files:
logger.warning(f"No PDFs found in {pdf_dir} for image extraction.")
return
logger.info(f"Starting image extraction from {len(pdf_files)} PDFs in {pdf_dir}.")
for pdf_path in tqdm(pdf_files, desc="Extracting images", unit="PDF"):
get_images_from_pdf(pdf_path, save_dir=image_dir, save_type=save_type)
logger.info(f"Images extracted from {pdf_dir} and saved to {image_dir}")
def create_splits(split_metadata_file: str | Path, split: str):
"""Create the per-split doc ids."""
create_split_files(
split_metadata_file=split_metadata_file,
split=split,
)
logger.info(f"Doc Ids Files created for {split} split")
def download_mmqa(output_dir: str):
"""Downloads and decompresses the MMQA dataset.
Args:
output_dir (str): Directory where the MMQA files will be downloaded and decompressed.
"""
logger.info(f"Starting MMQA dataset download to {output_dir}")
download_and_decompress_mmqa(output_dir)
logger.info(f"MMQA dataset downloaded and decompressed successfully in {output_dir}")
def generate_wiki_mapping(text: str, image: str, table: str, output: str = "id_url_mapping.jsonl"):
"""Generates a mapping of 'id' to 'url' from multiple JSONL files.
Args:
text (str): Path to the JSONL file containing text data from multimodalqa dataset with 'id' and 'url' fields.
image (str): Path to the JSONL file containing image data from multimodalqa dataset with 'id' and 'url' fields.
table (str): Path to the JSONL file containing table data from multimodalqa dataset with 'id' and 'url' fields.
output (str): Path to save the output JSONL file. Defaults to 'id_url_mapping.jsonl'.
"""
logger.info("Starting wiki mapping generation...")
generate_wiki_links_mapping(text_file=text, image_file=image, table_file=table, output_file=output)
logger.info(f"Wiki mapping successfully saved to {output}")
def main():
fire.Fire({
"download_mmqa": download_mmqa,
"generate_wiki_mapping": generate_wiki_mapping,
"download_pdfs": download_pdfs,
"check_pdfs": check_pdfs,
"extract_images": extract_images,
"create_splits": create_splits,
})
if __name__ == "__main__":
main()