Files
M3DocRAG/rag.sh
2025-07-09 15:41:46 +00:00

38 lines
1.3 KiB
Bash
Executable File

#!/bin/sh
set -e
. ./.env
mkdir -p $LOCAL_DATA_DIR
mkdir -p $LOCAL_EMBEDDINGS_DIR
mkdir -p $LOCAL_MODEL_DIR
mkdir -p $LOCAL_OUTPUT_DIR
mkdir -p $LOCAL_EVALOUTPUT_DIR
. .venv/bin/activate
set -x
BACKBONE_MODEL_NAME="Qwen2-VL-7B-Instruct"
RETRIEVAL_MODEL_TYPE="colpali"
RETRIEVAL_MODEL_NAME="colpaligemma-3b-pt-448-base"
RETRIEVAL_ADAPTER_MODEL_NAME="colpali-v1.2"
EMBEDDING_NAME="colpali-v1.2_m3-docvqa_dev" # from Step 1 Embedding
SPLIT="dev"
DATASET_NAME="m3-docvqa"
FAISS_INDEX_TYPE='ivfflat'
N_RETRIEVAL_PAGES=1
INDEX_NAME="${EMBEDDING_NAME}_pageindex_$FAISS_INDEX_TYPE" # from Step 2 Indexing
OUTPUT_SAVE_NAME="${RETRIEVAL_ADAPTER_MODEL_NAME}_${BACKBONE_MODEL_NAME}_${DATASET_NAME}" # where to save RAG results
BITS=16 # BITS=4 for 4-bit qunaitzation in low memory GPUs
uv run examples/run_rag_m3docvqa.py \
--use_retrieval \
--retrieval_model_type=$RETRIEVAL_MODEL_TYPE \
--load_embedding=True \
--split=$SPLIT \
--bits=$BITS \
--n_retrieval_pages=$N_RETRIEVAL_PAGES \
--data_name=$DATASET_NAME \
--model_name_or_path=$BACKBONE_MODEL_NAME \
--embedding_name=$EMBEDDING_NAME \
--retrieval_model_name_or_path=$RETRIEVAL_MODEL_NAME \
--retrieval_adapter_model_name_or_path=$RETRIEVAL_ADAPTER_MODEL_NAME \
--output_dir=$LOCAL_EVALOUTPUT_DIR/$OUTPUT_SAVE_NAME